GF thanks NSERC Canada for Grants in Aid of Research.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1215). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Ferguson, G., McAlees, A. J., McCrindle, R., Restivo, R. J. & Roberts, P. J. (1977). J. Am. Chem. Soc. pp. 3170–3171.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 293. Copenhagen: Munksgaard.
- McAlees, A. J. (1994). Unpublished work.
- McAlees, A. J. & McCrindle, R. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 741-745.
- McCrindle, R., Ferguson, G., McAlees, A. J. & Roberts, P. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1406–1414.
- Spek, A. L. (1992). *PLATON. Molecular Geometry Program.* Univ. of Utrecht, The Netherlands.

Acta Cryst. (1995). C51, 458-461

Hindered Cavity-Shaped N-Oxides

MACIEJ KUBICKI AND TERESA BOROWIAK

Laboratory of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

WIESŁAW Z. ANTKOWIAK

Laboratory of Organic Spectrochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

(Received 18 January 1994; accepted 6 April 1994)

Abstract

 nar conformation of molecule (1) is observed compared with molecule (2). Modes of steric strain compensation in both (1) and (2) are discussed.

Comment

Annelation of 2-phenylquinoline N-oxide at the 3- and 6'-positions gives a series of cavity-shaped molecules whose shapes depend on the number and hybridization of C atoms in the 3,6'-bridge. The introduction of a substituent at position 2' causes steric strain in the bay region of the molecule which can affect its reactivity. In particular, these compounds have been synthesized as model compounds in order to study the mechanism of the observed facile deoxidation of orellanine (3,3',4,4'-tetrahydroxy-2,2'-bipyridine 1,1'-dioxide) (Antkowiak & Gessner, 1979, 1984; Antkowiak, Antkowiak & Czerwiński, 1990). We present here the crystal structures of 1-hydroxy-5,6-dihydro-12-azabenz[a]anthracene N-oxide and 1-methoxy-5,6dihydro-12-azabenz[a]anthracene N-oxide [hereinafter referred to as (1) and (2), respectively].

The asymmetric unit of compound (2) contains two molecules, denoted as A and B, which do not differ significantly. The differences in bond lengths and angles are less than $2\sigma_+ [\sigma_+ = (\sigma_1^2 + \sigma_2^2)^{1/2}]$. The geometries of molecules (1) and (2) are affected by two elements, namely, steric hindrance and/or intramolecular hydrogen bonding. We have selected some structural parameters of (1) and (2) in order to analyse steric hindrance (Table 5); these include: the sum of the deviations, $\Sigma |d|$, of the atoms from the least-squares planes of the aromatic systems, the dihedral angle between the aromatic ring planes (denoted α), the distance between atoms N12 and C1 (denoted $d_{12,1}$) and the O12— N12-C11a and O1-C1-C12b bond angles. All the special features of the molecular structure result from the tendency towards steric hindrance minimization. Examination of Table 5 shows that the modes of steric strain compensation in compounds (1) and (2) differ. In (1), a short intramolecular O1-H1...O12 hydrogen bond [O1···O12 2.450 (3), H1···O12 1.47 (4) Å, O1-H1...O12 159 (3)°] is formed, which restrains the conformational versatility to a greater measure than in compound (2). Nevertheless, a smaller value of the sum of distortions, $\Sigma |d|$, in compound (1) is observed. On the other hand, the dihedral angle between the two aromatic systems is much smaller in (1) than in (2). The same tendency has been found in other cavity-shaped *N*-oxides, namely, 5-hydroxy-9,10-dihydro-4-azaphenanthrene 4oxide (Kubicki, Borowiak, Chruścicki & Antkowiak, 1993) and its 5-methoxy derivative (Kubicki, Borowiak, Antkowiak, Antkowiak & Chruścicki, 1994). In neither (1) nor (2) is pyramidalization at C1 or N12 observed, the sum of bond angles around these atoms being equal

Fig. 1. A displacement ellipsoid representation of compound (1) with the labelling scheme. The ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. The hydrogen bond is depicted by a dashed line.

Fig. 2. A displacement ellipsoid representation of molecule (2A) with the labelling scheme. The ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

to 360° . However, examination of the χ^2 test, calculated for the least-squares planes of the aromatic rings, shows that both atoms of the pivot bond, C12a and C12b, are pushed out of the ring planes. In both compounds (1) and (2), the substituents deviate in opposite directions from their aromatic ring planes.

The N-O bond lengths of (1) and (2) are different, that of compound (1) being longer due to the hydrogen bond in which it is involved. In (2), the N-O bond lengths are very close to the length of the 'free' N—O bond found in pyridine N-oxide [1.2806(4)]Å; Sørensen, Mahler & Rastrup-Andersen, 1974; Eichhorn, 1987]. Also, the C-O bond length in (1) is shortened compared with the typical value of 1.362 Å (Allen, Kennard, Watson, Brammer, Orpen & Taylor, 1987). The non-aromatic rings of compounds (1) and (2) exhibit a 1,3-diplanar conformation with a twofold axis passing through the midpoints of the pivot bond C12a-C12b. In compound (1), this conformation is an ideal one, the ΔC_2 asymmetry parameter (Duax & Norton, 1975) being equal to 0.3° , whereas in (2) these values are 5.4 and 3.1° in molecules A and B, respectively. Molecules of (1) and (2) can occur as two enantiomeric isomers due to the restrained rotation around the pivot bond.

No significant short contacts are observed in the crystal packing.

Experimental

Compound (1) Crystal data

C₁₇H₁₃NO₂ $M_r = 263.28$ Monoclinic $P2_1/a$ a = 14.257 (2) Å b = 7.2001 (8) Å c = 12.871 (1) Å $\beta = 108.88$ (1)° V = 1250.1 (2) Å³ Z = 4 $D_x = 1.399$ Mg m⁻³

Data collection

Syntex $P2_1$ diffractometer $\omega/2\theta$ scans Absorption correction: none 1653 measured reflections 1653 independent reflections 1258 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F^2 R(F) = 0.0421 $wR(F^2) = 0.1244$ Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 15 reflections $\theta = 21.60-44.15^{\circ}$ $\mu = 0.742 \text{ mm}^{-1}$ T = 293 (2) K Prism $0.35 \times 0.20 \times 0.20 \text{ mm}$ Colorless Crystal source: benzene-hexane solution

 $\theta_{max} = 57.35^{\circ}$ $h = -15 \rightarrow 14$ $k = 0 \rightarrow 7$ $l = 0 \rightarrow 14$ 2 standard reflections monitored every 100 reflections intensity decay: 1.5%

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.132 \text{ e Å}^{-3}$ $\Delta\rho_{\rm min} = -0.150 \text{ e Å}^{-3}$

S = 1.109	Extinction correction:	C6	0.1782 (2)	0.5933 (3)	0.7048 (2)	0.0613 (7)
1653 reflections	SHELXL93 (Sheldrick.	C6a	0.2529 (2)	0.5186 (3)	0.8073 (2)	0.0502 (6)
186 porometers	1002)	C7	0.2940 (2)	0.6235 (3)	0.8987 (2)	0.0545 (6)
	1995)	C7a	0.3607 (2)	0.5451 (3)	0.9946 (2)	0.0514 (6)
H-atom parameters not	Extinction coefficient:	C8	0.4084 (2)	0.6470 (3)	1.0902 (2)	0.0628 (7)
refined except for H1	0.0136 (14)	C9	0.4717 (2)	0.5623 (4)	1.1808 (2)	0.0678 (7)
for which all parameters	Atomic scattering factors	C10	0.4908 (2)	0.3719 (4)	1.1798 (2)	0.0635 (7)
refined	from International Tables	C11	0.4465 (2)	0.2675 (3)	1.0882 (2)	0.0571 (6)
$1/[2/(\Gamma^2) + (0.0)(F_0 D)^2]$	nom miernanonai Tables	Clla	0.38195 (15)	0.3546 (3)	0.9957 (2)	0.0484 (6)
$w = 1/[\sigma^{-}(F_{o}) + (0.0658P)^{-}$	for Crystallography (1992,	N12	0.33687 (13)	0.2498 (2)	0.90075 (14)	0.0497 (5)
+ 0.3321P	Vol. C, Tables 4.2.6.8 and	012	0.35461 (12)	0.0677 (2)	0.90806 (14)	0.0652 (5)
where $P = (F_o^2 + 2F_c^2)/3$	6.1.1.4)	C12a	0.27791 (15)	0.3271 (3)	0.8065 (2)	0.0479 (6)
	,	C12b	0.2362 (2)	0.2177 (3)	0.7052 (2)	0.0499 (6)

Compound (2)

Crystal data

CuHurNO	Cu Ka radiation	isotropic displacement parameters (Ų) for (2)				
M = 277.31	$\lambda = 1.54178$ Å	$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
$M_r = 277.51$	$\lambda = 1.34176 \text{ A}$					
Monoclinic	Cell parameters from 15		x	ν	7	Um
Pn	reflections	CIA	0.6580 (3)	0.5956 (6)	0.3154 (4)	0.0468 (11)
a = 16.092 (2) A	$\theta = 8.25 - 43.35^{\circ}$	01 <i>A</i>	0.5701 (2)	0.5368 (4)	0.2543 (3)	0.0550 (9)
b = 7.9060 (10) Å	$\mu = 0.704 \text{ mm}^{-1}$	C13A	0.4985 (4)	0.6395 (9)	0.2558 (7)	0.084 (2)
c = 11.8890 (10) Å	T = 293 (2) K	C2A	0.6822 (4)	0.7402 (6)	0.3886 (5)	0.0543 (12)
$\beta = 115,200,(10)^{\circ}$	Prism	C3A	0.7726 (4)	0.7772 (7)	0.4592 (5)	0.0620 (14)
V = 115.200 (10)		C4A	0.8421 (4)	0.6702 (7)	0.4640 (5)	0.0616 (14)
V = 1308.0 (3) A	$0.3 \times 0.2 \times 0.2$ mm	C4aA	0.8198 (4)	0.5230 (6)	0.3897 (5)	0.0517 (12)
Z = 4	Colorless	C5A	0.8889 (3)	0.3933 (7)	0.3998 (5)	0.0599 (13)
$D_x = 1.346 \text{ Mg m}^{-3}$	Crystal source: CH ₂ Cl ₂ –	C6A	0.8494 (3)	0.2194 (7)	0.4046 (5)	0.0560 (12)
-	toluene solution	CoaA	0.7651 (3)	0.1909 (6)	0.2852 (4)	0.0466 (11)
		C7A	0.7446 (4)	0.0411 (6)	0.2233 (5)	0.0507 (12)
Data collection		C7aA	0.0087(4)	0.0303 (0)	0.1048 (5)	0.04/9(11)
		C04	0.0398(4) 0.5720(4)	-0.1223(7)	0.0380 (3)	0.0555 (12)
Syntex P2 ₁ diffractometer	$\theta_{\rm max} = 57.32^{\circ}$	C104	0.5720(4) 0.5784(4)	-0.1233(7)	-0.1356 (5)	0.0020 (14)
$\omega/2\theta$ scans	$h = -17 \rightarrow 15$	CIIA	0.5523(4)	0.1779 (6)	-0.0727(4)	0.0513(12)
Absorption correction:	$k = -8 \rightarrow 8$	CllaA	0.6211 (3)	0.1786 (5)	0.0491 (5)	0.0439 (10)
none	$l = 0 \rightarrow 12$	N12A	0.6447 (3)	0.3334 (5)	0.1155 (4)	0.0441 (9)
1035 massured reflections	2 standard reflections	O12A	0.6051 (2)	0.4721 (4)	0.0580 (3)	0.0519 (8)
1955 measured reflections		C12aA	0.7092 (3)	0.3355 (6)	0.2351 (4)	0.0428 (10)
1865 independent reflections	monitored every 100	C12bA	0.7266 (3)	0.4920 (5)	0.3083 (4)	0.0422 (10)
1768 observed reflections	reflections	C1 <i>B</i>	0.0953 (3)	-0.0975 (6)	0.0013 (5)	0.0483 (11)
$[I > 2\sigma(I)]$	intensity decay: 2.2%	O1 <i>B</i>	0.0213 (3)	-0.0370 (4)	-0.0983 (3)	0.0556 (9)
$R_{\rm int} = 0.0352$	5 5	C13B	-0.0130 (5)	-0.1365 (9)	-0.2081 (6)	0.080 (2)
		C2B	0.1425 (4)	-0.2431 (6)	-0.0004 (6)	0.0585 (13)
Refinement		C3B	0.2236 (4)	-0.2834 (7)	0.0999 (6)	0.0651 (15)
Rejmement		C4B C4nP	0.2620 (4)	-0.1/38 (7)	0.2001 (6)	0.0636 (15)
Refinement on F^2	$\Delta \rho_{\rm max} = 0.377 \ {\rm e} \ {\rm \AA}^{-3}$	C4aD C5R	0.2132(3)	-0.0288 (7)	0.2003 (3)	0.0544(12)
R(F) = 0.0553	$\Delta \rho_{\rm min} = -0.225 \ {\rm e} \ {\rm \AA}^{-3}$	C5D C6R	0.2374(4) 0.2384(3)	0.1002(8)	0.3072(3)	0.0012(13)
$wR(F^2) = 0.1450$	Extinction correction:	C6aB	0.1364(3)	0.3025 (6)	0.2403(3) 0.1814(4)	0.0446 (10)
S = 1.072	SHELVIO2 (Shaldwish	C7B	0.0956 (4)	0.4540 (6)	0.1841(5)	0.0504 (12)
3 = 1.072	SHELAL95 (Sheldrick,	C7aB	-0.0014(4)	0.4647 (6)	0.1292 (5)	0.0461 (11)
1865 reflections	1993)	C8B	-0.0482(4)	0.6187 (7)	0.1221 (5)	0.0600 (13)
382 parameters	Extinction coefficient:	C9B	-0.1408 (4)	0.6225 (8)	0.0771 (5)	0.0636 (14)
H-atom parameters not	0.0035 (8)	C10B	-0.1923 (4)	0.4731 (7)	0.0354 (5)	0.0617 (15)
refined	Atomic scattering factors	C11 <i>B</i>	-0.1497 (3)	0.3231 (7)	0.0399 (5)	0.0527 (12)
$w = 1/[\sigma^2(F_2^2) + (0.1141P)^2$	from International Tables	CllaB	-0.0543 (3)	0.3191 (6)	0.0838 (4)	0.0438 (11)
+ 0.4126P1	for Crustellooranby (1002	N12B	-0.0098 (3)	0.1638 (5)	0.0851 (3)	0.0414 (8)
(57120)	jor Crystatiography (1992,	012B	-0.0587 (2)	0.0258 (4)	0.0532 (3)	0.0515 (8)
where $F = (F_o^2 + 2F_c^2)/3$	vol. C, Tables 4.2.6.8 and	CI2aB	0.0826 (3)	0.1610 (5)	0.1212 (4)	0.0419 (10)

C12bB

C1--01

0.1286 (3)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

6.1.1.4)

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

	$A = \{0, 1\}$				
	$U_{a2} = (1/3)\sum_{i}\sum_{i} U_{ii}a^{*}a^{*}a_{i}a_{i}a_{i}$				
	- 04	(,-)=,=,=,•,,			01—H1
	x	у	z	U_{eq}	C2—C3
C1	0.2861 (2)	0.0725 (3)	0.6711 (2)	0.0583 (6)	C3-C4
01	0.37884 (13)	0.0199 (2)	0.7300 (2)	0.0772 (6)	C4—C4a
C2	0.2399 (2)	-0.0158 (3)	0.5709 (2)	0.0683 (7)	C4a—C1
C3	0.1475 (2)	0.0349 (4)	0.5068 (2)	0.0768 (8)	C4a—C5
C4	0.0989 (2)	0.1800 (4)	0.5369 (2)	0.0692 (7)	C5-C6
C4a	0.1428 (2)	0.2751 (3)	0.6335 (2)	0.0558 (6)	C6—C6a
C5	0.0971 (2)	0.4481 (3)	0.6615 (2)	0.0654 (7)	C6a—C7

Table 3. Selected geometric parameters (Å, °) for (1)

0.0052 (6)

0.1089 (5)

0.0455 (11)

Table 2. Fractional atomic coordinates and equivalent

C1—01	1.349 (3)	C6a-C12a	1.425 (3)
C1—C2	1.397 (3)	C7—C7a	1.409 (3)
C1—C12b	1.411 (3)	C7a—C11a	1.404 (3)
01—H1	1.02 (4)	C7a—C8	1.405 (3)
C2—C3	1.358 (4)	C8—C9	1.366 (3)
C3—C4	1.377 (4)	C9C10	1.399 (4)
C4—C4a	1.380 (3)	C10-C11	1.369 (3)
C4a—C12b	1.414 (3)	C11—C11a	1.396 (3)
C4a—C5	1.502 (3)	C11a—N12	1.402 (3)
C5—C6	1.524 (3)	N12-012	1.333 (2)
C6—C6a	1.501 (3)	N12-C12a	1.352 (3)
C6a—C7	1.361 (3)	C12a—C12b	1.474 (3)

01—C1—C2	118.3 (2)	C8—C7a—C7	123.8 (2
O1-C1-C12b	122.3 (2)	C9-C8-C7a	120.9 (2
C2-C1-C12b	119.3 (2)	C8-C9-C10	120.5 (2
C3-C2-C1	120.8 (2)	C11-C10-C9	120.6 (2
C2—C3—C4	120.7 (3)	C10C11C11a	118.8 (2
C3—C4—C4a	120.5 (2)	C11-C11a-N12	119.4 (2
C4—C4a—C12b	120.0 (2)	C11—C11a—C7a	121.9 (2
C4C4aC5	121.5 (2)	N12-C11a-C7a	118.7 (2
C12b—C4a—C5	118.4 (2)	O12-N12-C12a	121.1 (2
C4a—C5—C6	108.7 (2)	O12-N12-C11a	116.4 (2
C6a-C6-C5	108.3 (2)	C12a-N12-C11a	122.5 (2
C7-C6a-C12a	120.3 (2)	N12-C12a-C6a	118.4 (2
C7—C6a—C6	123.0 (2)	N12-C12a-C12b	122.0 (2
C12a—C6a—C6	116.6 (2)	C6a—C12a—C12b	119.5 (2
C6a—C7—C7a	121.0 (2)	C1-C12b-C4a	118.5 (2
C11a-C7a-C8	117.4 (2)	C1-C12b-C12a	124.8 (2
C11a—C7a—C7	118.8 (2)	C4a-C12b-C12a	116.5 (2

Table 4. Selected geometric parameters (Å, °) for (2)

	Molecule A	Molecule B
C101	1.368 (6)	1.359 (6)
C1—C2	1.388 (7)	1.384 (7)
C1—C12b	1.405 (7)	1.414 (7)
01—C13	1.415 (7)	1.419 (7)
C2—C3	1.366 (8)	1.379 (8)
C3C4	1.384 (8)	1.377 (9)
C4C4a	1.412 (7)	1.404 (7)
C4a—C12b	1.418 (7)	1.409 (7)
C4a—C5	1.480 (8)	1.497 (8)
C5C6	1.526 (8)	1.528 (8)
C6—C6a	1.505 (7)	1.503 (7)
C6a—C7	1.359 (7)	1.373 (7)
C6a—C12a	1.420 (6)	1.409 (6)
С7—С7а	1.420 (8)	1.414 (7)
C7a—C11a	1.403 (6)	1.397 (7)
C7a—C8	1.412 (7)	1.416 (7)
C8—C9	1.356 (8)	1.353 (8)
C9-C10	1.395 (8)	1.406 (9)
C10-C11	1.375 (7)	1.359 (8)
C11C11a	1.399 (7)	1.395 (7)
C11a—N12	1.418 (6)	1.419 (6)
N12012	1.306 (5)	1.304 (5)
N12—C12a	1.357 (6)	1.361 (6)
C12a—C12b	1.470 (6)	1.475 (6)
01—C1—C2	124.2 (4)	124.3 (5)
O1C1-2b	115.6 (4)	116.1 (4)
C2-C1-C12b	120.0 (4)	119.5 (5)
C1C13	117.5 (4)	117.4 (4)
C3C2C1	120.1 (5)	120.2 (5)
C2-C3-C4	121.7 (5)	121.0 (5)
C3—C4—C4a	119.5 (5)	120.3 (5)
C4C4aC12b	118.8 (5)	118.6 (5)
C4—C4a—C5	122.6 (5)	122.4 (5)
C12b—C4a—C5	118.4 (4)	118.8 (4)
C4a—C5—C6	108.5 (4)	107.8 (4)
C6a-C6-C5	108.8 (4)	109.2 (4)
C7-C6a-C12a	120.6 (4)	120.5 (4)
C7C6aC6	123.7 (4)	123.0 (4)
C12a—C6a—C6	115.5 (4)	116.5 (4)
C6a—C7—C7a	119.9 (4)	119.1 (4)
C11a—C7a—C8	117.8 (5)	120.0 (4)
C11a—C7a—C7	119.0 (4)	117.7 (5)
C8—C7a—C7	123.2 (5)	122.3 (5)
C9—C8—C7a	120.7 (5)	120.8 (5)
C8—C9—C10	120.6 (5)	120.3 (5)
C11C10C9	120.7 (5)	120.5 (5)
C10-C11-C11a	118.7 (4)	119.3 (5)
CII—CIIa—C7a	121.2 (4)	121.3 (4)
CII-CIIa-NI2	119.1 (4)	119.6 (4)
C/a—CIIa—NI2	119.7 (4)	119.1 (4)
012-N12-C12a	121.6 (4)	121.4 (4)
UI2-NI2-CIIa	118.5 (3)	118.8 (3)
CIZA-NIZ-CIIA	119.9 (4)	119.8 (4)
	119.7 (4)	120.0 (4)
NTZ-CT2a-CT2b	119.9 (4)	120.6 (4)
Coa-CI2a-CI2b	120.2 (4)	119.2 (4)

C1-C12b-C4a	119.2 (4)	119.7 (4)
C1-C12b-C12a	124.8 (4)	116.1 (4)
C4a-C12b-C12a	115.4 (4)	123.8 (4)

Table 5. Selected structural parameters (Å, °) for (1)and (2)

 $\Sigma |d|$ is the sum of the deviations of the atoms from the least-squares plane of the aromatic system, α is the dihedral angle between the aromatic ring planes, and $d_{12,1}$ is the distance between atoms N12 and C1.

	(1)	(2A)	(2B)
$\Sigma d $ Ring A	0.101	0.241	0.253
$\Sigma d $ Ring B	0.094	0.161	0.173
α	33.0(1)	39.3 (2)	40.5 (2)
d _{12,1}	3.083 (3)	3.091 (6)	3.091 (6)
O12-N12-C11a	116.4 (2)	118.5 (3)	118.8 (3)
01	122 3 (2)	1156(4)	116 1 (4)

For both compounds, data collection: *P2*₁ software; cell refinement: *P2*₁ software; data reduction: *PRADIR* (Jaskólski, 1990); program(s) used to solve structures: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993); molecular graphics: *Stereochemical Workstation Operation Manual* (Siemens, 1989); software used to prepare material for publication: *SHELXL93*.

This study was supported jointly by projects 2-0759-9-01 KBN and 2-0721-91-01 KBN.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry, including bond distances and angles involving H atoms, and torsion angles have been deposited with the IUCr (Reference: KA1078). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Antkowiak, R., Antkowiak, W. Z. & Czerwiński, G. (1990). Tetrahedron, 46, 2445-2452.
- Antkowiak, W. Z. & Gessner, W. P. (1979). Tetrahedron Lett. 20, 1931-1936.
- Antkowiak, W. Z. & Gessner, W. P. (1984). Tetrahedron Lett. 25, 4045–4048.
- Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structure, Vol. 1. New York: Plenum.
- Eichhorn, E. (1987). Acta Cryst. B43, 111-112.
- Jaskólski, M. (1990). PRADIR. Program for Data Reduction. Adam Mickiewicz Univ., Poznań, Poland.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kubicki, M., Borowiak, T., Antkowiak, R., Antkowiak, W. Z. & Chruścicki, H. (1994). Recl Trav. Chim. Pays-Bas, 113, 383–389.
- Kubicki, M., Borowiak, T., Chruścicki, H. & Antkowiak, W. Z. (1993). J. Crystallogr. Spectrosc. Res. 23, 113–118.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

- Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119-124.